S-p.su

Антикризисные новости
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Метод регрессивного анализа

Метод регрессивного анализа

Метод регрессивного анализа применяется для определения технико-экономических параметров продукции, относящейся к конкретному параметрическому ряду, с целью построения и выравнивания ценностных соотношений. Этот метод используется для анализа и обоснования уровня и соотношений цен продукции, характеризующейся наличием одного или нескольких технико-экономических параметров, отражающих основные потребительские свойства. Регрессивный анализ позволяет найти эмпирическую формулу, описывающую зависимость цены от технико-экономических параметров изделий:

где Р — значение цены единицы изделия, руб.; (Х1, Х2, . Хп) — технико-экономические параметры изделий.

Метод регрессивного анализа — наиболее совершенный из используемых нормативно-параметрических методов — эффективен при проведении расчетов на основе применения современных информационных технологий и систем. Применение его включает следующие основные этапы:

· определение классификационных параметрических групп изделий;

· отбор параметров, в наибольшей степени влияющих на цену изделия;

· выбор и обоснование формы связи изменения цены при изменении параметров;

· построение системы нормальных уравнений и расчет коэффициентов регрессии.

Основной квалификационной группой изделий, цена которых подлежит выравниванию, является параметрический ряд, внутри которого изделия могут группироваться по различному исполнению в зависимости от их применения, условий и требований эксплуатации и т. д. При формировании параметрических рядов могут быть применены методы автоматической классификации, которые позволяют из общей массы продукции выделять ее однородные группы. Отбор технико-экономических параметров производится исходя из следующих основных требований:

· в состав отобранных параметров включаются параметры, зафиксированные в стандартах и технических условиях; помимо технических параметров (мощности, грузоподъемности, скорости и т.д.) используются показатели серийности продукции, коэффициенты сложности, унификации и др.;

· совокупность отобранных параметров должна достаточно полно характеризовать конструктивные, технологические и эксплуатационные свойства изделий, входящих в ряд, и иметь достаточно тесную корреляционную связь с ценой;

· параметры не должны быть взаимозависимы.

Для отбора технико-экономических параметров, существенно влияющих на цену, вычисляется матрица коэффициентов парной корреляции. По величине коэффициентов корреляции между параметрами можно судить о тесноте их связи. При этом близкая к нулю корреляция показывает незначительное влияние параметра на цену. Окончательный отбор технико-экономических параметров производится в процессе пошагового регрессивного анализа с использованием компьютерной техники и соответствующих стандартных программ.

В практике ценообразования применяется следующий набор функций:

P = ao + alXl + . + antXn,

Р = ао + а1Х1 + . + аnХп + (ап+1Хп) (ап+1Хп) +. + (ап+nХп2) (ап+nХп2)

Р = а0 + а1 : In Х1 + . + ап : In Xn,

P = a0 (X1^a1) (X2^a2) .. (Xn^an)

P = e^(а1+а1X1+. +аnХn)

Р = ао + а1:Х1 + а2:Х2 + . + ап:Хп,

где Р — выравнивание цены; X1 X2. Хп — значение технико-экономических параметров изделий ряда; a0, a1 . аn — вычисляемые коэффициенты уравнения регресии.

В практической работе по ценообразованию в зависимости от формы связи цен и технико-экономических параметров могут использоваться другие уравнения регрессии. Вид функции связи между ценой и совокупностью технико-экономических параметров может быть задан предварительно или выбран автоматически в процессе обработки на ЭВМ. Теснота корреляционной связи между ценой и совокупностью параметров оценивается по величине множественного коэффициента корреляции. Близость его к единице говорит о тесной связи. По уравнению регрессии получают выравненные (расчетные) значения цен изделий данного параметрического ряда. Для оценки результатов выравнивания вычисляют относительные величины отклонения расчетных значений цен от фактических:

Цр = Рф — Рр : Р х 100

где Рф, Рр — фактическая и расчетная цены.

Величина Цр не должна превышать 8-10%. В случае существенных отклонений расчетных значений от фактических необходимо исследовать:

· правильность формирования параметрического ряда, так как в его составе могут оказаться изделия, по своим параметрам резко отличающиеся от других изделий ряда. Их надо исключить;

· правильность отбора технико-экономических параметров. Возможна совокупность параметров, слабо коррелируемая с ценой. В этом случае необходимо продолжить поиск и отбор параметров.

Порядок и методика проведения регрессивного анализа, нахождения неизвестных параметров уравнения и экономическая оценка полученных результатов осуществляются в соответствии с требованиями математической статистики.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9498 — | 7528 — или читать все.

Регрессионный анализ

Материал из MachineLearning.

Регрессионный анализ — метод моделирования измеряемых данных и исследования их свойств. Данные состоят из пар значений зависимой переменной (переменной отклика) и независимой переменной (объясняющей переменной). Регрессионная модель есть функция независимой переменной и параметров с добавленной случайной переменной. Параметры модели настраиваются таким образом, что модель наилучшим образом приближает данные. Критерием качества приближения (целевой функцией) обычно является среднеквадратичная ошибка: сумма квадратов разности значений модели и зависимой переменной для всех значений независимой переменной в качестве аргумента. Регрессионный анализ — раздел математической статистики и машинного обучения. Предполагается, что зависимая переменная есть сумма значений некоторой модели и случайной величины. Относительно характера распределения этой величины делаются предположения, называемые гипотезой порождения данных. Для подтверждения или опровержения этой гипотезы выполняются статистические тесты, называемые анализом остатков. При этом предполагается, что независимая переменная не содержит ошибок. Регрессионный анализ используется для прогноза, анализа временных рядов, тестирования гипотез и выявления скрытых взаимосвязей в данных.

Содержание

Определение регрессионного анализа

Регрессия — зависимость математического ожидания (например, среднего значения) случайной величины от одной или нескольких других случайных величин (свободных переменных), то есть . Регрессионным анализом называется поиск такой функции , которая описывает эту зависимость. Регрессия может быть представлена в виде суммы неслучайной и случайной составляющих.

где — функция регрессионной зависимости, а — аддитивная случайная величина с нулевым матожиданием. Предположение о характере распределения этой величины называется гипотезой порождения данных. Обычно предполагается, что величина имеет гауссово распределение с нулевым средним и дисперсией .

Читать еще:  К статистическим методам анализа относятся

Задача нахождения регрессионной модели нескольких свободных переменных ставится следующим образом. Задана выборка — множество значений свободных переменных и множество соответствующих им значений зависимой переменной. Эти множества обозначаются как , множество исходных данных . Задана регрессионная модель — параметрическое семейство функций зависящая от параметров и свободных переменных . Требуется найти наиболее вероятные параметры :

Функция вероятности зависит от гипотезы порождения данных и задается Байесовским выводом или методом наибольшего правдоподобия.

Линейная регрессия

Линейная регрессия предполагает, что функция зависит от параметров линейно. При этом линейная зависимость от свободной переменной необязательна,

В случае, когда функция линейная регрессия имеет вид

здесь — компоненты вектора .

Значения параметров в случае линейной регрессии находят с помощью метода наименьших квадратов. Использование этого метода обосновано предположением о гауссовском распределении случайной переменной.

Разности между фактическими значениями зависимой переменной и восстановленными называются регрессионными остатками (residuals). В литературе используются также синонимы: невязки и ошибки. Одной из важных оценок критерия качества полученной зависимости является сумма квадратов остатков:

Здесь — Sum of Squared Errors.

Дисперсия остатков вычисляется по формуле

Здесь — Mean Square Error, среднеквадратичная ошибка.

На графиках представлены выборки, обозначенные синими точками, и регрессионные зависимости, обозначенные сплошными линиями. По оси абсцисс отложена свободная переменная, а по оси ординат — зависимая. Все три зависимости линейны относительно параметров.

Нелинейная регрессия

Нелинейные регрессионные модели — модели вида

которые не могут быть представлены в виде скалярного произведения

где — параметры регрессионной модели, — свободная переменная из пространства , — зависимая переменная, — случайная величина и — функция из некоторого заданного множества.

Значения параметров в случае нелинейной регрессии находят с помощью одного из методов градиентного спуска, например алгоритма Левенберга-Марквардта.

О терминах

Термин «регрессия» был введён Фрэнсисом Гальтоном в конце 19-го века. Гальтон обнаружил, что дети родителей с высоким или низким ростом обычно не наследуют выдающийся рост и назвал этот феномен «регрессия к посредственности». Сначала этот термин использовался исключительно в биологическом смысле. После работ Карла Пирсона этот термин стали использовать и в статистике.

В статистической литературе различают регрессию с участием одной свободной переменной и с несколькими свободными переменными — одномерную и многомерную регрессию. Предполагается, что мы используем несколько свободных переменных, то есть, свободная переменная — вектор . В частных случаях, когда свободная переменная является скаляром, она будет обозначаться . Различают линейную и нелинейную регрессию. Если регрессионную модель не является линейной комбинацией функций от параметров, то говорят о нелинейной регрессии. При этом модель может быть произвольной суперпозицией функций из некоторого набора. Нелинейными моделями являются, экспоненциальные, тригонометрические и другие (например, радиальные базисные функции или персептрон Розенблатта), полагающие зависимость между параметрами и зависимой переменной нелинейной.

Различают параметрическую и непараметрическую регрессию. Строгую границу между этими двумя типами регрессий провести сложно. Сейчас не существует общепринятого критерия отличия одного типа моделей от другого. Например, считается, что линейные модели являются параметрическими, а модели, включающие усреднение зависимой переменной по пространству свободной переменной —непараметрическими. Пример параметрической регресионной модели: линейный предиктор, многослойный персептрон. Примеры смешанной регрессионной модели: функции радиального базиса. Непараметрическая модель — скользящее усреднение в окне некоторой ширины. В целом, непараметрическая регрессия отличается от параметрической тем, что зависимая переменная зависит не от одного значения свободной переменной, а от некоторой заданной окрестности этого значения.

Есть различие между терминами: «приближение функций», «аппроксимация», «интерполяция», и «регрессия». Оно заключается в следующем.

Приближение функций. Дана функция дискретного или непрерывного аргумента. Требуется найти функцию из некоторого параметрическую семейства, например, среди алгебраических полиномов заданной степени. Параметры функции должны доставлять минимум некоторому функционалу, например,

Термин аппроксимация — синоним термина «приближение функций». Чаще используется тогда, когда речь идет о заданной функции, как о функции дискретного аргумента. Здесь также требуется отыскать такую функцию , которая проходит наиболее близко ко всем точкам заданной функции. При этом вводится понятие невязки — расстояния между точками непрерывной функции и соответствующими точками функции дискретного аргумента.

Интерполяция функций — частный случай задачи приближения, когда требуется, чтобы в определенных точках, называемых узлами интерполяции совпадали значения функции и приближающей ее функции . В более общем случае накладываются ограничения на значения некоторых производных производных. То есть, дана функция дискретного аргумента. Требуется отыскать такую функцию , которая проходит через все точки . При этом метрика обычно не используется, однако часто вводится понятие «гладкости» искомой функции.

Регрессия и классификация тесно связаны друг с другом. Термин алгоритм в классификации мог бы стать синонимом термина модель в регрессии, если бы алгоритм не оперировал с дискретным множеством ответов-классов, а модель — с непрерывно-определенной свободной переменной.

Применение корреляционно-регрессионного анализа

В системе статистической обработки данных и аналитики часто используется сочетание методик корреляции и регрессии. Создателем корреляционно-регрессионного анализа считается Фрэнсис Гальтон, который разработал теоретическую основу методологии в 1795 году. В конце 19 века многие европейские ученые в области теории статистики углубили познания в вопросе использования количественных измерителей для отражения связей между явлениями.

Что такое корреляционно-регрессионный анализ (КРА) предприятия?

Корреляционно-регрессионный анализ (КРА) на предприятиях используется для выявления связей между несколькими факторами хозяйственной деятельности и оценки степени взаимозависимости выбранных для анализа критериев. Методика использует два алгоритма действий:

  1. Корреляция, которая направлена на построение моделей связей.
  2. Регрессия, используемая для прогнозирования событий на основе наиболее подходящей для ситуации модели связей.

Анализ проводится в несколько шагов:

  • постановка задач проведения исследования;
  • массовый сбор информации: систематизация статистических данных по конкретным показателям деятельности предприятия в динамике за несколько периодов;
  • этап создания модели связей;
  • анализ функционирования модели, оценка ее эффективности.
Читать еще:  Анализ социального проекта

Для проведения КРА необходимо использовать показатели в едином измерителе, все они должны иметь числовое значение.

ОБРАТИТЕ ВНИМАНИЕ! Для достоверности данных и работоспособности модели сведения должны быть собраны за длительный отрезок времени.

Для полноты анализа надо устранить количественные ограничения на показатели модели, должно соблюдаться условие постоянной временной и территориальной структуры рассматриваемой совокупности элементов.

Где используется корреляционно-регрессионный анализ?

Основные ситуации применения КРА:

  1. Тестирование отношения между несколькими величинами: выявляется, что именно этот показатель является влияющим, а второй – зависимым.
  2. Определение связи между двумя переменными факторами без уточнения причинно-следственного блока сведений.
  3. Расчет показателя по изменению значения другого фактора.

Корреляционно-регрессионная методика анализа может применяться для подготовки данных о разных сторонах деятельности компании. В бизнесе построение моделей зависимости одного показателя от других факторов и дальнейшая эксплуатация выведенной математической формулы позволяют отслеживать оперативное изменение текущей ситуации в выбранном сегменте хозяйствования и быстро принимать управленческие решения.

Например, благодаря КРА можно постоянно отслеживать уровень рыночной стоимости предприятия. Для этого на начальных этапах проводится сбор информации о динамике изменения рыночной стоимости и статистических показателей всех возможных факторов влияния:

  • уровень выручки;
  • рентабельность;
  • размер активов;
  • сумма непогашенной дебиторской или кредиторской задолженности;
  • резерв сомнительных долгов и др.

Для каждого критерия строится модель, которая выявляет, насколько сильно фактор может влиять на рыночную стоимость бизнес-проекта. Когда все модели построены, оценивается их работоспособность и адекватность. Из комплекса данных выбирается тот тип взаимосвязей, который отвечает требованиям объективности и достоверности. На основе полученной схемы связей создается уравнение, которое позволит получать прогнозные данные об изменении рыночной стоимости при условии изменения значения конкретного фактора.

Методику можно применять при формировании ценовой политики, составлении бизнес-планов, проработке вопроса о расширении ассортиментного ряда и в других сегментах предпринимательства.

Задачи, виды и показатели корреляционно-регрессионного анализа

Задачи КРА заключаются в:

  • идентификации наиболее значимых факторов влияния на конкретный показатель деятельности предприятия;
  • количественном измерении тесноты выявленных связей между показателями;
  • определении неизвестных причин возникновения связей;
  • всесторонней оценке факторов, которые признаны наиболее важными для рассматриваемого показателя;
  • выведении формулы уравнения регрессии;
  • составлении прогноза возможного результата деятельности при изменении ключевых связанных факторов с учетом возможного влияния других факторных признаков.

КРА подразумевает использование нескольких видов корреляционных и регрессионных методов. Зависимости выявляются при помощи корреляций таких типов:

  • парная, если связь устанавливается с участием двух признаков;
  • частная – взаимосвязь оценивается между искомым показателем и одним из ключевых факторов, при этом условием задается постоянное значение комплекса других факторов (то есть числовое выражение всех остальных факторов в любых ситуациях будет приниматься за определенную неизменную величину);
  • множественная – основу исследования составляет влияние на показатель деятельности не одного фактора, а сразу нескольких критериев (двух и более).

СПРАВОЧНО! Выявленные показатели степени тесноты связей отражаются коэффициентом корреляции.

На выбор коэффициента влияет шкала измерения признаков:

  1. Шкала номинальная, которая предназначена для приведения описательных характеристик объектов.
  2. Шкала ординальная нужна для вычисления степени упорядоченности объектов в привязке к одному и более признакам.
  3. Шкала количественная используется для отражения количественных значений показателей.

Регрессионный анализ пользуется методом наименьших квадратов. Регрессия может быть линейной и множественной. Линейный тип предполагает модель из связей между двумя параметрами. Например, при наличии таких двух критериев, как урожайность клубники и полив, понятно, что именно объем поступающей влаги будет влиять на объем выращенной и собранной клубники. Если полив будет чрезмерным, то урожай пропадет. Урожайность же клубники никак не может воздействовать на систему полива.

Множественная регрессия учитывает более двух факторов одновременно. В случае с клубникой при оценке ее урожайности могут использоваться факторы полива, плодородности почвы, температурного режима, отсутствия слизняков, сортовые особенности, своевременность внесения удобрений. Все перечисленные показатели в совокупности оказывают комплексное воздействие на искомое значение – урожайность ягод.

Система показателей анализа формируется критериями классификации. Например, при экстенсивном типе развития бизнеса в качестве показателей могут выступать такие факторы:

  • количество сотрудников;
  • число заключенных договоров за отчетный период;
  • посевные площади;
  • прирост поголовья скота;
  • расширение дилерской сети;
  • объем основных фондов.

При интенсивном типе развития могут применяться следующие показатели:

  • производительность труда;
  • рентабельность;
  • урожайность;
  • фондоотдача;
  • ликвидность;
  • средний объем поставок в отчетном периоде по одному договору.

Оценка

Для оценки достоверности и эффективности модели связей необходимо построить матрицу коэффициентов. Коэффициент в случае парной корреляции вычисляется по формуле:

Диапазон значений коэффициента ограничивается показателями от -1 до +1. Если итоговое значение было получено со знаком плюс, то между рассматриваемыми переменными имеется прямая связь. Если в результате расчетов значение оказалось отрицательным, то связь будет обратной, то есть при увеличении одного из показателей другой связанный с ним фактор будет уменьшаться. Пример прямой связи – увеличение посевных площадей будет способствовать росту объема собираемой с полей продукции. Пример обратной связи – увеличение посевных площадей сопровождается снижением урожайности.

Качественный аспект тесноты связи между рассматриваемыми в аналитических расчетах показателями можно оценивать, основываясь на шкале Чеддока.

В соответствии с ее нормами связь будет расцениваться как сильная при значении коэффициента корреляции по абсолютным данным величины выше 0,7. Положительный или отрицательный знак сопровождает числовое значение – неважно, ориентироваться необходимо только на число. Если коэффициент после вычислений оказался ниже 0,3, то связь можно считать слабой.

Для дальнейших этапов анализа выбираются факторы с высокой степенью связанности. Все остальные критерии, для которых установлена слабая связь, отбрасываются. На основании полученных сведений определяется вид математического уравнения регрессии. Рассчитывается численное значение оценки параметров регрессии, определяются качества полученной модели регрессии.

Читать еще:  Математические приемы анализа

2.8.2. Регрессионный анализ

где у — зависимая переменная (она всегда одна); хi — независимые переменные (факторы) (их может быть несколько). Если независимая переменная одна — это простой регрессионный анализ. Если же их несколько (п 2), то такой анализ называется многофакторным. В ходе регрессионного анализа решаются две основные задачи: • построение уравнения регрессии, т.е. нахождение вида зависимости между результатным показателем и независимыми факторами x1, x2, …, xn. • оценка значимости полученного уравнения, т.е. определение того, насколько выбранные факторные признаки объясняют вариацию признака у. Применяется регрессионный анализ главным образом для планирования, а также для разработки нормативной базы. В отличие от корреляционного анализа, который только отвечает на вопрос, существует ли связь между анализируемыми признаками, регрессионный анализ дает и ее формализованное выражение. Кроме того, если корреляционный анализ изучает любую взаимосвязь факторов, то регрессионный — одностороннюю зависимость, т.е. связь, показывающую, каким образом изменение факторных признаков влияет на признак результативный. Регрессионный анализ — один из наиболее разработанных методов математической статистики. Строго говоря, для реализации регрессионного анализа необходимо выполнение ряда специальных требований (в частности, xl,x2. xn; y должны быть независимыми, нормально распределенными случайными величинами с постоянными дисперсиями). В реальной жизни строгое соответствие требованиям регрессионного и корреляционного анализа встречается очень редко, однако оба эти метода весьма распространены в экономических исследованиях. Зависимости в экономике могут быть не только прямыми, но и обратными и нелинейными. Регрессионная модель может быть построена при наличии любой зависимости, однако в многофакторном анализе используют только линейные модели вида:

Построение уравнения регрессии осуществляется, как правило, методом наименьших квадратов, суть которого состоит в минимизации суммы квадратов отклонений фактических значений результатного признака от его расчетных значений, т.е.:

где т — число наблюдений; j = a + b1x1j + b2x2j+ . + bnхnj — расчетное значение результатного фактора. Коэффициенты регрессии рекомендуется определять с помощью аналитических пакетов для персонального компьютера или специального финансового калькулятора. В наиболее простом случае коэффициенты регрессии однофакторного линейного уравнения регрессии вида y = а + bх можно найти по формулам:

Рассмотрим использование методов корреляционного и регрессионного анализа на примере 2.13. Пример 2.13.

Показатели деятельности торговых предприятий, реализующих молоко «Лето», за II квартал 1999 г.

Показатели деятельности торговых предприятий, реализующих молоко «Лето», за II квартал 1999 г. Продолжение

Анализ будем проводить с помощью табличного процессора MS Excel. Описательная статистика для представленных данных отражена в табл. 2.6. Таблица 2.Описательная статистика реализации молока «Лето» торговыми точками

Описательная статистика реализации молока «Лето» торговыми точками

1. Анализ следует начать с проверки однородности совокупности данных. Критерием однородности является условие: Var Видим, что это условие выполняется лишь для рядов данных, относящихся к ценам (фактор x) и объемам реализации (фактор у) молока. Проверка нормальности распределений этих факторов показывает:

Условия нормальности выполняются, следовательно, по двум этим рядам данных можно строить регрессионную зависимость. Следующим шагом при построении регрессионной модели будет определение результативного и факторного признаков. Исходя из сути поставленной задачи, можно сказать, что в данном случае независимым фактором является цена за литр, объем реализации — признак зависимый (результатный). Регрессионная зависимость между факторами х и у (зависимость объема реализации молока от его цены) будет иметь вид:

Полученный результат — обратно пропорциональная зависимость между факторами — вполне согласуется со здравым смыслом: очевидно, что чем выше цена, тем менее привлекательна торговая точка для покупателей данного товара. Регрессионная зависимость позволяет строить прогноз величины результативного фактора при известной величине зависимого (т.е. прогноз объема реализации от цены за литр молока). Подставив, например, х = 12,40 руб. за литр в аналитическую формулу зависимости, получим ожидаемое значение объема реализации за квартал — y = 11,72 тыс. литров. 2. Определить, связан ли объем прибыли, полученной предприятиями торговли, с объемами реализации ими одного вида продукции, можно с помощью корреляционного анализа. Матрица корреляций, рассчитанная с помощью компьютера, выглядит так:

Величины коэффициентов парной корреляции факторов таковы:

Эти величины свидетельствуют о том, что между ценой товара (х) и объемом его реализации (у) связь весьма тесная (величина 0,82 говорит о том, что 82% вариации фактора у объясняются вариацией фактора х). Прибыль предприятия от цены на этот товар зависит слабо (коэффициент корреляции равен -0,32), а вот связь величины прибыли и объемов реализации молока «Лето» оказалась средней силы (ryz = 0,49), причем зависимость прямо пропорциональная. Следовательно, увеличение объемов реализации этого товара в среднем довольно заметно влияет на рост прибыли предприятий торговли. По результатам анализа руководству магазинов следует подумать о мерах по стимулированию продажи молока этой марки. Можно ли построить и регрессионную зависимость прибыли от исследуемых факторов? Для полного ряда из 15 значений критерий однородности (Vаr Поэтому при регрессионном анализе прибыли целесообразно брать лишь один из этих факторов, а именно объем реализации, поскольку его связь с величиной прибыли более тесная (ryz = 0,78, тогда как rxz = 0,48 — также по усеченной выборке). Необходимо отметить, что в экономических исследованиях корреляционный и регрессионный анализы нередко объединяются в один — корреляционно-регрессионный анализ. Подразумевается, что в результате такого анализа будет построена регрессионная зависимость (т.е. проведен регрессионный анализ) и рассчитаны коэффициенты ее тесноты и значимости (т.е. проведен корреляционный анализ). В известном смысле корреляционная связь носит более общий характер, поскольку она не предполагает наличия зависимости «причина — следствие».

Ссылка на основную публикацию
ВсеИнструменты 220 Вольт
Adblock
detector
×
×