Анализ динамических рядов - Антикризисные новости
S-p.su

Антикризисные новости
33 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Анализ динамических рядов

Анализ динамического ряда

МЕТОДИЧЕСКАЯ РАЗРАБОТКА

ЛАБОРАТОРНОГО ЗАНЯТИЯ

ДЛЯ СТУДЕНТОВ 4 КУРСА

СПЕЦИАЛЬНОСТИ «ЛЕЧЕБНОЕ ДЕЛО»

ПО ТЕМЕ:

”ДИНАМИЧЕСКИЕ РЯДЫ

И ИХ АНАЛИЗ”

ЦЕЛЬ ЗАНЯТИЯ:Научить студентов способам построения динамических рядов, выравнивания динамических рядов, выполнению и анализу показателей динамического ряда.

МЕТОДИКА ПРОВЕДЕНИЯ ЗАНЯТИЯ:

1. определение преподавателем исходного уровня знаний студентов;

2. разъяснение наиболее трудных вопросов темы;

3. самостоятельная работа: изучение типового задания и выполнение

одного из вариантов заданий.

ОСНОВНЫЕ ВОПРОСЫ ТЕМЫ:

1. Динамический ряд, определение, виды.

2. Выравнивание динамического ряда, цель, методы выравнивания.

3. Показатели динамического ряда.

При изучении изменений какого-либо явления во времени составляется динамический ряд.

Динамический ряд –это совокупность однородных статистических величин, показывающих изменение какого-либо явления во времени.

Величины, составляющие динамический ряд, называются уровнями ряда.Уровни динамического ряда могут быть представлены: абсолютными, относительными и средними величинами.

Динамический ряд, составленный из абсолютных величин, называется простым. Динамический ряд, составленный из средних или относительных величин, называется сложным или производным.Простые динамические ряды являются исходными для построения сложных рядов.

Простые динамические ряды бывают двух видов:

1. Моментныйдинамический ряд состоит из величин, характеризующих размеры явления на какой-то определенный момент (дату). Например, каждый уровень может характеризовать численность населения, численность врачей, число коек на конец года, месяца, декады и т.д. Уровни моментного ряда не могут дробиться.

2. Интервальныйдинамический ряд состоит из величин, характеризующих какие-либо итоги за определенный интервал времени. Например, каждый уровень такого ряда может характеризовать число родившихся, заболевших, умерших за какой-то год, месяц, декаду, неделю и т.д. То есть это данные, которые накапливаются за тот или иной промежуток времени. Выбор величины интервала (год, месяц, неделя, день и т.д.) зависит от изменчивости изучаемого явления (рождаемость, смертность, заболеваемость, средняя длительность лечения и т.д.). Чем медленнее изменяется явление во времени, тем крупнее интервал. Интервальный динамический ряд в отличие от моментного можно разделить на более дробные периоды или, напротив, укрупнить интервалы.

Выравнивание динамического ряда

Иногда динамика изучаемого явления представлена не в виде непрерывно меняющегося в одном направлении (снижения или увеличения) явления, а скачкообразными изменениями. В таких случаях для выявления общей динамической тенденции используют различные методы выравнивания динамического ряда:

* вычисление групповой средней;

* вычисление скользящей средней.

Укрупнение интервала производят путем суммирования данных за ряд смежных периодов. Например, суммируя число ОРЗ по месяцам, можно дать поквартальное число заболеваний и выявить сезонность колебаний заболеваемости острыми респираторными заболеваниями.

Вычисление групповой средней проводится путем суммирования смежных уровней и деления полученной суммы на число слагаемых.

Скользящая средняя вычисляется как средняя величина из данного уровня и двух соседних с ним. При этом каждый уровень ряда заменяется на среднюю величину из данного уровня и двух соседних с ним. Этот метод дает возможность сгладить резкие колебания динамического ряда.

Например, для уровней динамического ряда, показывающего частоту расхождения клинических и патологоанатомических диагнозов по данным городской больницы №2 города “М” за ряд лет, характерны скачкообразные колебания, не позволяющие выявить общую динамическую тенденцию

Методика вычисления групповой и скользящей средней

Годы% расхождения клинических и патологоанатомических диагнозовГрупповая средняяСкользящая средняя
12,411,2––
10,010,7
9,810,510,3
11,210,2
9,69,410,0
9,29,5
9,79,39,3
8,99,2
9,09,19,0
9,2––

Т.о. путем вычисления групповой и скользящей средней влияние случайных колебаний на уровни динамического ряда устранено и выявлена четкая тенденция постепенного снижения показателей частоты расхождения клинических и патологоанатомических диагнозов.

Анализ динамического ряда

Чтобы проанализировать динамический ряд нужно изобразить его графически и вычислить ряд показателей:

· Абсолютный прирост (убыль) – разность между последующим и предыдущим уровнем. Измеряется в тех же единицах, в которых представлены уровни ряда.

· Показатель роста (убыли) – отношение каждого последующего уровня к предыдущему, принятому за 100%. Он показывает сколько % от предыдущего уровня составляет последующий уровень.

· Темп прироста (убыли) – отношение абсолютного прироста (убыли) каждого последующего уровня к предыдущему уровню, принятому за 100%. Он показывает на сколько % увеличился (снизился) последующий уровень по сравнению с предыдущим и поэтому может быть рассчитан по формуле:

темп прироста = темп роста – 100%

· Показатель наглядности – отношение каждого уровня ряда к одному из них (чаще начальному) принятому за 100%.

Рассчитанные показатели будут свидетельствовать о тенденциях изучаемого явления в динамике.

ТИПОВОЕ ЗАДАНИЕ

На основе приведенных данных:

I. Вычислить и представить в виде таблицы показатели динамического ряда:

1) абсолютный прирост (убыль);

2) показатель роста (убыли);

3) темп прироста (убыли);

4) показатель наглядности.

II. Изобразить показатели наглядности графически.

III. Проанализировать динамический ряд и сделать выводы.

Динамика смертности в РФ за ряд лет:

Динамические ряды — краткое руководство по анализу изменений явлений во времени

Даная статья понятными и простыми терминами объяснит, что же такое динамические ряды, для чего они нужны, как производится анализ полученных данных и какие возможности открываются перед теми, кто владеет методикой данного анализа. Любое явление в области здравоохранения нуждается в тщательной оценке, и здесь знания анализа динамических рядов неоценимы. С помощью динамического ряда можно оценить и спрогнозировать проблематику любой нозологической единицы, сформировать дальнейшую тактику лечения и меры профилактики заболеваний.

Динамический ряд — ряд однородных величин, характеризующих изменение явления во времени.

Целью анализа динамических рядов является:

  • выявление закономерности изменения изучаемого явления во времени;
  • прогнозирование (экстраполирование) полученных данных на последующие
    годы.

Числовые значения, составляющие динамический ряд, называются уровнями ряда (у).

Типы динамических рядов:

  1. В зависимости от вида уровня ряда:

а) простые (уровень ряда выражен абсолютными числами);

б) сложные (уровень ряда выражен обобщающими коэффициентами).

  1. В зависимости от способа формирования временного интервала:

а) моментные (данные собираются на определенный момент времени);

б) интервальные (данные собираются за определенный период времени).

  1. В зависимости от выраженности изменений явления во времени (определя­ется по коэффициенту корреляции между временем и изучаемым явлением).

а) с выраженной тенденцией (r =0,7 — 1,0);

б) с неустойчивой тенденцией (r =0,3 — 0,69);

в) с отсутствием тенденции ( r = 0 — 0,29).

Основное требование, предъявляемое к анализируемым динамическим ря­дам, заключается в сопоставимости их уровней. Для оценки сопоставимости прово­дят предварительный анализ полученных данных по следующим критериям:

  • единство территории, на которой проводился сбор данных;
  • единая методология учета данных;
  • единые временные интервалы, в течение которых проводилась регистрация
    данных.
Читать еще:  Анализ использования персонала предприятия

Методика анализа динамических рядов

Методика аналитики предусматривает выполнение последовательных действий:

  1. Представить полученные данные графически и выявить форму зависимости изучаемого явления от времени.
  2. Оценить наличие и силу корреляции изучаемого явления от времени.
  3. Если установлено, что ряд обладает выраженной тенденцией, проводят анализ компонентов динамики ряда: основной тенденции (эволюции, тренда), кратковременных систематических движений и случайных колебаний. Основная задача анализа — разделить эти компоненты и выявить основную закономерность изменения явления во времени. Для выявления и описания тренда динамический ряд подвергают обработке — выравниванию.

Способы выравнивания динамических рядов

Чтобы произвести выравнивание динамических рядов потребуются следующие действия:

  • Укрупнение временных интервалов (периодов), в течение которых изучается явление.
  • Сглаживание ряда методом скользящей средней.
  • Аналитический способ.

При этом способе на основании фактических данных подбирается наиболее подходящее для отражения тенденции развития явления математическое уравнение (аппроксимирующая функция), которое принимается за модель развития явления во времени. Т.е. уровни ряда рассматриваются как функция времени, и задача выравнивания сводится к определению вида функции, отысканию ее параметров по эмпирическим данным и расчету по найденной формуле теоретических выравненных уровней. Наиболее часто используются следующие функции:

а) линейная зависимость:

б) экспоненциальная зависимость:

в) показательная зависимость:

г) параболическая зависимость:

у – теоретический уровень;

t – временной интервал.

В качестве примера возьмем линейную зависимость и проведем выравнивание, используя для нахождения параметров уравнения а1 способ наименьших квадратов. Способ наименьших квадратов позволяет найти теоретическую кривую, максимально приближенную к эмпирической, а условие минимума суммы квадратов отклонений теоретических данных от фактических позволяет свести математическое решение задачи к системе нормальных уравнений:

где у — уровни фактического ряда;

n — количество уровней;

t — порядковый номер временного периода.

Эта система уравнений легко упрощается, если «t» присвоить ранги (порядковые номера), ведя отсчет времени от середины ряда. При нечетном ряде середина обозначается через 0, а отсчет рангов ведется через единицу с соответствующим знаком в ту или иную сторону от середины (например: -5,-4,-3,-2,-1, 0,+1.+2,+3,->:4,+5). При четном ряде две средние временные точки обозначаются через +1 и -1, а остальные ранги присваиваются через две единицы (например: -5,-3,-1,+1,+3,+5).

При отсчете времени от середины ряда St = 0 и система нормальных уравнений принимает вид:

Отсюда находим параметры уравнения:

Подставляя в уравнение у = а + а1t вместо «t» его ранги, находим выравненные (теоретические) значения уровней ряда и строим теоретическую кривую выравненного динамического ряда.

При использовании аналитического способа всегда отмечается отклонение теоретических уровней от фактических уровней ряда, которое может быть обуслов­лено как случайными колебаниями, так и неправильно подобранным аппроксими­рующим уравнением. В связи с этим заключительным этапом выравнивания динамического ряда аналитическим способом является оценка точности аппроксимации с определенным уровнем значимости.

Оценка точности аппроксимации возможна с помощью нахождения

Для получения точной оценки необходимо найти такие величины:

а) коэффициент вариации:

где у- фактический уровень ряда;

yt — теоретический уровень ряда;

k- число параметров уравнения;

n- число уровней ряда.

Аппроксимация считается точной при Cv не более 15%.

б) коэффициент расхождения Тейла:

где у — фактический уровень ряда;

yt — теоретический уровень ряда.

Аппроксимация считается точной при U не более 5%

После аналитического выравнивания динамического ряда и описания тренда возможно экстраполировать полученные данные. Экстраполяция — предположение о сохранении тренда, базирующееся на допущении неизменности влияющих факто­ров и предшествующей тенденции. Осуществляется путем подставления в найденное уравнение аппроксимации не фактического значения временного интервала, а предполагаемого порядкового номера (ранг) того периода, на который прогнозируется результат.

Вычисление основных показателей динамического ряда

Алгоритм вычислений ведущих параметров динамических рядов:

yi- текущий уровень (сравниваемый);

уi-1— базисный уровень (с каким сравнивают);

t- период времени, в течение которого уровень предполагается неизменным.

1.Абсолютный прирост (убыль) :

2.Темп роста (убыли):

3.Темп прироста (относительная скорость), темп убыли :

4.Средний темп прироста (убыли):

где а; а1 — параметры уравнения;

k = 1 при нечетном ряде;

k = 2 при четном ряде.

5.1% прироста (убыли): используются при сравнении динамических рядов с уровнями, выраженными различными обобщающими коэффициентами.

Таким образом, с помощью данного руководства по определению и расчетам такого понятия, как, динамические ряды, специалисты различных отраслей медицины, ученые могут эффективно и быстро оценить изменение различных величин в течение времени.

Благодарим за интерес, проявленный к нашей статье, оставайтесь с нами!

Ряды динамики в статистике

9.3. Методы анализа основной тенденции в рядах динамики

Комплексный анализ динамических рядов, как правило, включает не только расчет характеристик интенсивности изменения уровней ряда при переходе от одного момента или промежутка времени к другому (абсолютных приростов, коэффициентов и темпов роста и прироста), а также нахождение обобщенных средних характеристик (среднего уровня ряда, средних темпов роста и прироста), но и выявление основных закономерностей в развитии динамического ряда. Определение тенденции развития, построение модели, описывающей изменение явления во времени, прогнозирование явления — все это важнейшие задачи при изучении динамических рядов экономических и социальных показателей.

На формирование уровней динамического ряда влияет множество различных факторов, которые по характеру воздействия можно объединить в три группы:

  1. действующие долговременно и определяющие основную тенденцию развития явления;
  2. действующие периодически — сезонные и циклические колебания;
  3. вызывающие случайные колебания уровней динамического ряда.

Соответственно, для анализа закономерности изменения уровней ряда динамики во времени применяют следующую модель:

где Тt — основная тенденция ряда ( тренд );

St — циклические (в частности, сезонные) колебания;

еt — случайные колебания.

В аддитивной модели ряд динамики представлен как сумма перечисленных компонент [yt = Tt + St + et], в мультипликативной модели — как их произведение []. В дальнейшем будем исходить из предположения мультипликативной формы связи между компонентами ряда динамики.

Тенденцией развития, или трендом, называется сформировавшееся направление развития явления во времени под воздействием постоянно действующих факторов. Судить о наличии тенденции в динамическом ряду на основе его визуального анализа можно лишь тогда, когда четко видно, что при переходе от одного момента времени к другому уровни ряда возрастают или убывают. Однако, как правило, нельзя сразу сказать, есть или нет тенденция в изменении уровней динамического ряда. Для этого применяются специальные методы.

Читать еще:  Внутренняя среда организации анализируется по параметрам

К методам выявления основной тенденции развития динамического ряда (Тt) относятся:

  • метод укрупнения интервалов;
  • метод скользящей средней;
  • аналитическое выравнивание динамических рядов.

Рассмотрим их подробнее.

9.3.1. Метод укрупнения интервалов

Применение метода укрупнения интервалов рассмотрим на основе данных табл. 9.13.

Таблица 9.13. Поставки товаров в торговую сеть

МесяцПоставка товаров, млн руб.
Январь80
Февраль78
Март75
Апрель80
Май82
Июнь85
Июль87
Август82
Сентябрь85
Октябрь84
Ноябрь86
Декабрь88

Как видим, визуальный анализ данных не позволяет сделать какие-либо выводы о наличии тенденции в данном динамическом ряду: в отдельные месяцы, например, в феврале, марте, августе, октябре и декабре, поставки товаров снижались по сравнению с предыдущими месяцами, в остальные периоды — возрастали.

Применим к исходным данным метод укрупнения интервалов, образовав новый динамический ряд с более крупными временными периодами — кварталами, и рассчитаем средний месячный объем поставок в каждом квартале (табл. 9.14).

Таблица 9.14. Среднемесячные поставки товаров

КварталСреднемесячные поставки товаров, млн руб.
I77.7
II82.3
III84.0
IV84.7

Итак, по новым, более крупным интервалам уже четко видно, что значения исследуемого признака во временном аспекте имеют тенденцию к возрастанию.

Применение рассмотренного метода в основном ограничивается теми ситуациями, когда исходные данные относятся к дням, неделям или месяцам года, так как значения исследуемого признака по более мелким временным интервалам больше подвержены случайным колебаниям. Если временные промежутки представляют собой годы, то укрупнение интервалов становится малоэффективным.

9.3.2. Метод скользящей средней

Следующий способ выявления тенденции в динамическом ряду основан на расчете и анализе так называемых скользящих (подвижных) средних.

Скользящими (подвижными) средними называются средние арифметические значения показателя, исчисленные по новым m-членным укрупненным интервалам. Правила построения этих интервалов следующие. Первый из интервалов включает первые m уровней ряда динамики, второй интервал образуется путем исключения первого члена укрупненного интервала и замены его последующим элементом ряда динамики, имеющим номер (m + 1) и т.д. — до включения в интервал последнего уровня ряда. По вычисленным подобным путем подвижным средним делают вывод о существовании тенденции в динамическом ряду.

Если в качестве укрупненного интервала используют период в три месяца, то первая подвижная трехчленная средняя вычисляется как средняя арифметическая из данных за январь, февраль и март, вторая — как средняя арифметическая из данных за февраль, март, апрель и т.д. Значения подвижных средних относят к конкретному временному периоду, соответствующему середине укрупненного интервала.

Проведем сглаживание ряда методом скользящей средней по трем членам (табл. 9.15).

Таблица 9.15. Сглаживание ряда динамики методом скользящей средней по трем членам

В нашем примере первая скользящая средняя относится к февралю, вторая — к марту и т. д.

В тех случаях, когда сглаживание проводится по четному числу уровней ряда динамики, середина временного интервала сглаживания будет находиться между двумя моментами (периодами) времени. Например, если проводить сглаживание по четырем членам, середина первого интервала будет находиться между февралем и мартом, второго интервала — между мартом и апрелем и т.д. В таких случаях возникает необходимость центрирования полученных результатов для отнесения сглаженных значений показателя к конкретным периодам или моментам времени. Расчет центрированных скользящих средних может проводиться в два этапа:

  1. определение скользящих сумм и нецентрированных скользящих средних по четному числу уровней ряда динамики;
  2. исчисление центрированных скользящих средних из двух смежных ранее исчисленных нецентрированных скользящих средних и отнесение их к соответствующим периодам или моментам времени.

Методика расчета центрированных скользящих средних показана ниже (табл. 9.16).

Таблица 9.16. Сглаживание ряда динамики методом скользящей средней по четырем членам

9.3.3. Аналитическое сглаживание (выравнивание) рядов динамики

Аналитическое выравнивание динамических рядов — это нахождение определенной модели (уравнения тренда), которая математически описывает тенденцию развития явления во времени. При этом уровни показателя рассматриваются только как функция от времени. В отличие от рассмотренных выше методов, таких, как укрупнение интервалов, скользящих средних, направленных в основном на то, чтобы ответить на вопрос: есть ли тенденция в динамическом ряду или нет, и определить ее направление, аналитическое выравнивание позволяет более точно установить характер развития явления, а главное — описать его математически, уловить все нюансы и направления развития и, что, пожалуй, наиболее интересно, использовать в дальнейшем полученную модель для прогнозирования.

Первым шагом в проведении аналитического выравнивания является выбор вида математической функции, которую предполагается использовать в качестве модели тренда. При этом можно руководствоваться формой кривой, полученной на основе отображения на графике эмпирических данных. Схема построения графика достаточно проста: по оси абсцисс откладываются временные периоды (даты), по оси ординат — значения уровней динамического ряда.

При анализе рядов динамики в качестве линии тренда чаще всего используются следующие функции:

13 Ряды динамики

Статистическое изучение динамики социально-экономических явлений

Процессы и явления социально-экономической жизни общества, являющиеся предметом изучения статистики, находятся в постоянном движении и изменении. Для того, чтобы выявить тенденции и закономерности социально-экономического развития явлений, статистика строит особые ряды статистических показателей, которые называются рядами динамики (иногда их называют временными рядами), то есть ‑ это ряды изменяющихся во времени значений статистического показателя, расположенных в хронологическом порядке. В англоязычной литературе для временных рядов используется термин «time series». Ряды динамики получаются в результате сводки и обработки материалов периодического статистического наблюдения. Повторяющиеся во времени (по отчетным периодам) значения одноименных показателей в ходе статистической сводки систематизируются в хронологической последовательности. Значения показателя, составляющие ряд динамики, называются уровнями ряда.

Каждый ряд динамики характеризуется двумя параметрами: значениями времени и соответствующими им значениями уровней ряда. Уровни ряда обычно обозначаются «yt»: y1, y2 и т.д. В качестве показателя времени в рядах динамики могут указываться отдельные периоды (сутки, месяцы, кварталы, годы и т.д.) времени или определенные моменты (даты). Время в рядах динамики обозначается через «t».

Ряд динамики состоит из двух элементов:

1) уровня ряда (значения изучаемого показателя);

2) моментов (периодов) времени, когда фиксируется этот показатель.

Основные способы обработки рядов динамики:

Читать еще:  Методы анализа в статистике

1) укрупнение интервалов и расчет для них средних показателей;

2) сглаживание уровней способом скользящей средней;

3) выравнивание по аналитическим формулам.

Суть последнего способа заключается в том, что по эмпирическим данным находят теоретические (вероятностные) уровни, которые рассматриваются как некая функция времени.

Ряды динамики, как правило, представляют в виде таблицы или графически.

Ряды динамики могут быть классифицированы по следующим признакам:

В зависимости от способа выражения уровней ряды динамики подразделяются на ряды абсолютных, относительных и средних величин. При этом ряды динамики абсолютных величин рассматриваются как исходные, а ряды относительных и средних величин ‑ как производные.

Ряды динамики абсолютных величин наиболее полно характеризуют развитие процесса или явления, например, грузооборота транспорта, инвестиций в основной капитал, добычи топлива, уставного капитала коммерческих банков и т.д.

Ряды относительных величин могут характеризовать во времени темпы роста (или снижения) определенного показателя; изменение удельного веса того или иного показателя в совокупности или изменение показателей интенсивности отдельных явлений, например, удельного веса приватизированных предприятий в той или иной отрасли; производ­ства продукции на душу населения; структуры инвестиций в основной капитал по отраслям экономики, индекса потребительских цен и т.д.

Ряды динамики средних величин служат для характеристики изменения уровня явления, отнесенного к единице совокупности, например: данные о среднегодовой численности занятых в экономике; о средней урожайности отдельных сельскохозяйственных культур, о средней заработной плате в отдельных отраслях и т.д.

В зависимости от характера временного параметра ряды динамики делятся на моментные и интервальные.

Уровни моментных рядов динамики характеризуют явление по состоянию на определенный момент времени.

Пример. Моментный ряд динамики, характеризующий численность персонала строительной фирмы на 1-е число каждого месяца за первое полугодие 2009 г., представлен в таблице 13.1.

Таблица 13.1 ‑ Численность персонала строительной фирмы на 1-е число каждого месяца за первое полугодие 2009 г

Дата1.011.021.031.041.051.06
Численность персонала, чел.780810880930940970

Следует помнить, что моментные ряды абсолютных величин нельзя суммировать. Бессмысленно, например, складывать численность персонала по состоянию на 1 января, 1 февраля и т.д. Полученная сумма ничего не выражает, так как в ней многократно повторяются одни и те же единицы совокупности.

Ряд, в котором уровни характеризуют результат, накопленный или вновь произве­денный за определенный интервал времени, называется интервальным.

Пример. Интервальный ряд динамики, представлен в таблице 13.2.

Таблица 13.2. ‑ Характеристика динамики объема розничного товарооборота

Дата20042005200620072008
Товарооборот, млн. руб.28,331,938,342,345,2

Важное аналитическое отличие моментных рядов от интервальных состоит в том, что сумма уровней интервального ряда вполне реальный показатель, например, общий объем розничного товарооборота за 2004-2008 г.г.

В зависимости от расстояния между уровнями, ряды динамики подразделяются на ряды с равноотстоящими уровнями и не равноотстоящими уровнями во времени.

Ряды динамики следующих друг за другом периодов или следующих через оп­ределенные промежутки дат называются равноотстоящими, пример (табл. 13.1 и табл. 13.2).

Если же в рядах даются прерывающиеся периоды или неравномерные промежутки между датами, то ряды называются не равноотстоящими, пример(табл. 13.3).

Пример. Рядом динамики с не равноотстоящими уровнями во времени может служить объем экспорта продукции предприятия, представленный в таблице 13.3.

Таблица 13.3. – Динамика объема экспорта продукции предприятия

Годы19931996199820002004
Объем экспорта, млн. долл.11101220132014501640

По числу показателей можно выделить изолированные (одномерные) и комплексные (многомерные) ряды динамики.

Если ведется анализ во времени одного показателя ряда, то ряд динамики изолированный (например, данные о производст­ве газа по годам). В многомерном ряду представлена динамика нескольких показателей, характеризующих одно явление.

Сопоставимость уровней и смыкание рядов динамики

Важнейшим условием правильного построения рядов динамики является сопоста­вимость всех входящих в него уровней. Данное условие решается либо в процессе сбора и обработки данных, либо путем их пересчета.

Рассмотрим основные причины несопоставимости уровней ряда динамики.

Несопоставимость уровней ряда может возникнуть вследствие изменения единиц измерения и единиц счета.

Пример. Нельзя сравнивать и анализировать цифры о производстве тканей, если за одни годы оно дано в погонных метрах, а за другие ‑ в квадратных метрах.

На сопоставимость уровней ряда динамики непосредственно влияет методоло­гия учета или расчета показателей.

Например, если в одни годы среднюю урожайность считали с засеянной площади, а в другие ‑ с убранной, то такие уровни будут не­сопоставимы.

В процессе развития во времени, прежде всего, происходят количественные измерения явлений, а затем на определенных ступенях совершаются качественные скачки, приводящие к изменению закономерностей явления. Поэтому научный подход к изучению рядов динамики заключается в том, чтобы ряды, охватывающие большие периоды времени, разделять на такие, которые бы объединяли лишь однокачественные периоды развития совокупности, характеризующейся одной закономерностью развития.

Важно также, чтобы в ряду динамики интервалы или моменты, по которым определены уровни, имели одинаковый экономический смысл.

Например, при изучении роста поголовья скота бессмысленно сравнивать цифры поголовья по состоянию на 1 октября с данными 1 января, так как первая цифра включает не только скот, оставшийся на зимовку, но и предназначенный к убою, а вторая цифра включает только скот, оставленный на зимовку. Уровни ряда динамики могут оказаться несопоставимыми по кругу охватываемых объектов вследствие перехода ряда объектов из одного подчинения в другое.

Несопоставимость уровней ряда может возникнуть вследствие изменений территориальных границ областей, районов и так далее.

Для того, чтобы привести уровни ряда динамики к сопоставимому виду, иногда приходится прибегать к приему, который носит название смыкание рядов динамики. Под смыканием понимают объединение в один ряд (более длинный) двух или нескольких рядов динамики, уровни которых являются несопоставимыми. Для осуществления смыкания необходимо, чтобы для одного из периодов (переходного) имелись данные, исчисленные по разной методологии (или в разных границах).

Пример. Предположим, что в N-ом регионе имеются данные об общем объеме оборота розничной торговли за 2013-2015 гг. в фактически действующих ценах, и за 2015-2018 гг. ‑ в сопоставимых ценах (табл. 13.4.).

Таблица 13.4 ‑ Динамика общего объема оборота розничной торговли (млрд. руб.) цифры условные

Ссылка на основную публикацию
Adblock
detector